Show simple item record

dc.creatorChen,Xiao-Guang
dc.creatorXu,Cun-Shuan
dc.date2014-01-01
dc.date.accessioned2019-05-02T21:22:21Z
dc.date.available2019-05-02T21:22:21Z
dc.identifierhttps://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-97602014000100053
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/82425
dc.descriptionBACKGROUND: Liver regeneration (LR) after 2/3 partial hepatectomy (PH) is one of the most studied models of cell, organ, and tissue regeneration. Although the transcriptional profile analysis of regenerating liver has been carried out by many reserachers, the dynamic protein expression profile during LR has been rarely reported up to date. Therefore, this study aims to detect the global proteomic profile of the regenerating rat liver following 2/3 hepatectomy, thereby gaining some insights into hepatic regeneration mechanism. RESULTS: Protein samples extracted from the sham-operated and the regenerating rat livers at 6, 12, 24, 72, 120 and 168 h after PH were separated by IEF/SDS-PAGE and then analyzed by MALDI-TOF/TOF mass spectrometry. Compared to sham-operated groups, there were totally 220 differentially expressed proteins (including 156 up-regulated, 62 down-regulated, and 2 up/down-regulated ones) identified in the regenerating rat livers, and most of them have not been previously related to liver regeneration. According to the expression pattern analysis combined with gene functional analysis, it showed that lipid and carbohydrate metabolism were enhanced at the early phase of LR and continue throughout the regeneration process. Ingenuity Pathway Analysis indicated that YWHAE protein (one of members of the 14-3-3 protein family) was located at the center of pathway networks at all the timepoints after 2/3 hepatectomy under our experimental conditions, maybe suggesting a central role of this protein in regulating liver regeneration. Additionally, we also revealed the role of Cdc42 (cell division cycle 42) in the termination of LR. CONCLUSIONS: For the first time, our proteomic analysis suggested an important role of YWHAE and pathway mediated by this protein in liver regeneration, which might be helpful in expanding our understanding of LR amd unraveling the mechanisms of LR.
dc.formattext/html
dc.languageen
dc.publisherSociedad de Biología de Chile
dc.relation10.1186/0717-6287-47-59
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceBiological Research v.47 2014
dc.subjectPartial hepatectomy
dc.subjectRat liver regeneration
dc.subjectProteomic
dc.subjectMALDI TOF/TOF MS
dc.titleProteomic analysis of the regenerating liver following 2/3 partial hepatectomy in rats


This item appears in the following Collection(s)

Show simple item record