• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Sociedad de Biología de Chile
  • Biological Research
  • View Item
  •   Home
  • Sociedad de Biología de Chile
  • Biological Research
  • View Item

miR-205 promotes proliferation and invasion of laryngeal squamous cell carcinoma by suppressing CDK2AP1 expression

Author
Zhong,Gang

Xiong,Xingao

Full text
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-97602015000100060
Abstract
BACKGROUND: The aberrant expression of microRNAs (miRNAs) has been found in various types of cancer. miR-205 was reported to be upregulated in laryngeal squamous cell carcinoma (LSCC) tissues, however, the mechanisms by which miR-205 functions as a regulator of LSCC are largely unknown RESULTS: In this study, Real-time qPCR and Western blot assay showed that expression of miR-205 was upregulated and expression of cyclin-dependent kinase 2-associated protein 1 (CDK2AP1) was downregulated in LSCC tissues. The expression levels of miR-205 were negatively related to those of CDK2AP1 in LSCC tissues and cell lines. Moreover, we found that miR-205 was the upstream regulator of CDK2AP1 and could suppress the CDK2AP1 expression in LSCC cells. 3-(4,5-dimethylthiazal-2-yl)-2,5-diphenyl-tetrazolium bromide assays and transwell invasion assay were performed to test the proliferation and invasion of LSCC cells. Gelatin zymography was used to detect the activity of MMP2 and MMP9. CDK2AP1, c-Myc and CyclinD1 expression in cells was assessed with Western blotting. We found that miR-205 was the upstream regulator of CDK2AP1 and could suppress the expression of CDK2AP1 in LSCC cells. In addition, miR-205 significantly induced cell proliferation and invasion by suppressing CDK2AP1 expression. Consistent with miR-205 inhibitors, overexpressed CDK2AP1 suppressed the activity of MMP2 and MMP9 and c-Myc and CyclinD1 expression in LSCC cells CONCLUSION: These findings help us to better elucidate the molecular mechanisms of LSCC progression and provide a new theoretical basis to further investigate miR-205 as a potential biomarker and a promising approach for LSCC treatment
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB