• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Sociedad de Biología de Chile
  • Biological Research
  • View Item
  •   Home
  • Sociedad de Biología de Chile
  • Biological Research
  • View Item

Independent prognostic genes and mechanism investigation for colon cancer

Author
Li,Chunsheng

Shen,Zhen

Zhou,Yangyang

Yu,Wei

Full text
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-97602018000100209
Abstract
Abstract Propose We aimed to explore the potential molecular mechanism and independent prognostic genes for colon cancer (CC). Methods Microarray datasets GSE17536 and GSE39582 were downloaded from Gene Expression Omnibus. Meanwhile, the whole CC-related dataset were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNA (DEMs) were identified between cancer tissue samples and para-carcinoma tissue samples in TCGA dataset, followed by the KEGG pathway and GO function analyses. Furthermore, the clinical prognostic analysis including overall survival (OS) and disease-free survival (DFS) were performed in all three datasets. Results A total of 633 up- and 321 down-regulated mRNAs were revealed in TCGA dataset. The up-regulated mRNAs were mainly assembled in functions including extracellular matrix and pathways including Wnt signaling. The down-regulated mRNAs were mainly assembled in functions like Digestion and pathways like Drug metabolism. Furthermore, up-regulation of UL16-binding protein 2 (ULBP2) was associated with OS in CC patients. A total of 12 DEMs including Surfactant Associated 2 (SFTA2) were potential DFS prognostic genes in CC patients. Meanwhile, the GRP and Transmembrane Protein 37 (TMEM37) were two outstanding independent DFS prognostic genes in CC. Conclusions ULBP2 might be a potential novel OS prognostic biomarker in CC, while GRP and TMEM37 could be served as the independent DFS prognostic genes in CC. Furthermore, functions including extracellular matrix and digestion, as well as pathways including Wnt signaling and drug metabolism might play important roles in the process of CC.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB