• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item

Resonances and SSF Singularities for Magnetic Schrödinger Operators

Author
Bony, Jean-François

Bruneau, Vincent

Briet, Philippe

Raikov, Georgi

Full text
http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1441
Abstract
The aim of this note is to review recent articles on the spectral properties of magnetic Schrödinger operators. We consider H0, a 3D Schrödinger operator with constant magnetic field, and ˜H0, a perturbation of H0 by an electric potential which depends only on the variable along the magnetic field. Let H (resp. ˜H ) be a short range perturbation of H0 (resp. of ˜H0). In the case of (H,H0), we study the local singularities of the Krein spectral shift function (SSF) and the distribution of the resonances of H near the Landau levels which play the role of spectral thresholds. In the case of ( ˜H, ˜H0), we study similar problems near the eigenvaluesof ˜H0 of infinite multiplicity.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB