A Localized Heat Source Undergoing Periodic Motion: Analysis of Blow-Up and a Numerical Solution
Author
Kirk, C.M.
Abstract
A localized heat source moves with simple periodic motion along a one-dimensional reactive-diffusive medium. Blow-up will occur regardless of the amplitude or frequency of motion. Numerical results suggest that blow-up is delayed by increasing the amplitude or by increasing the frequency of motion. A brief survey is presented of the literature concerning numerical studies of nonlinear Volterra integral equations with weakly singular kernels that exhibit blow-up solutions.