dc.creator | Agarwal, Ravi P. | |
dc.creator | Filippakis, Michael E. | |
dc.creator | O’Regan, Donal | |
dc.creator | Papageorgiou, Nikolaos S. | |
dc.date | 2008-10-01 | |
dc.date.accessioned | 2019-05-03T12:36:40Z | |
dc.date.available | 2019-05-03T12:36:40Z | |
dc.identifier | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1497 | |
dc.identifier.uri | http://revistaschilenas.uchile.cl/handle/2250/84228 | |
dc.description | We consider a semilinear elliptic equation, with a right hand side nonlinearity which may grow linearly. Throughout we assume a double resonance at infinity in the spectral interval [λ1, λ2]. In this paper, we can also have resonance at zero or even double resonance in the order interval [λm, λm+1], m ≥ 2. Using Morse theory and in particular critical groups, we prove two multiplicity theorems. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1497/1351 | |
dc.source | CUBO, A Mathematical Journal; Vol. 10 Núm. 3 (2008): CUBO, A Mathematical Journal; 21–41 | es-ES |
dc.source | CUBO, A Mathematical Journal; Vol 10 No 3 (2008): CUBO, A Mathematical Journal; 21–41 | en-US |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.title | Multiple Solutions for Doubly Resonant Elliptic Problems Using Critical Groups | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |