Show simple item record

dc.creatorGaiko, Valery A.
dc.date2008-10-01
dc.date.accessioned2019-05-03T12:36:41Z
dc.date.available2019-05-03T12:36:41Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1504
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/84235
dc.descriptionIn this paper, using geometric properties of the field rotation parameters, we present a solution of Smale’s Thirteenth Problem on the maximum number of limit cycles for Li´enard’s polynomial system, generalize the obtained results for special classes of polynomial systems, and complete the global qualitative analysis of a piecewise linear dynamical system approximating a Li´enard-type polynomial system with an arbitrary number of finite singularities.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1504/1358
dc.sourceCUBO, A Mathematical Journal; Vol. 10 Núm. 3 (2008): CUBO, A Mathematical Journal; 115–132es-ES
dc.sourceCUBO, A Mathematical Journal; Vol 10 No 3 (2008): CUBO, A Mathematical Journal; 115–132en-US
dc.source0719-0646
dc.source0716-7776
dc.titleLimit Cycles of Li´enard-Type Dynamical Systemsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record