• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item

Semi-Classical Dispersive Estimates for the Wave and Schr¨odinger Equations with a Potential in Dimensions 𝓃 ≥ 4

Author
Cardoso, F.

Vodev, G.

Full text
http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1512
Abstract
We expand the operators  and , 0 < h ≪ 1, modulo operators whose L1 → L∞ norm is ON(hN), ∀ N ≥ 1, where 𝜑, 𝜓 ∈  and V ∈ L∞(𝓡𝓃), 𝓃 ≥ 4, is a real-valued potential satisfying V(x) = O (⟨x⟩-𝛿), 𝛿 > (𝓃 + 1)/2 in the case of the wave equation and 𝛿 > (𝓃 + 2)/2 in the case of the Schr¨odinger equation. As a consequence, we give sufficent conditions in order that the wave and the Schr¨odinger groups satisfy dispersive estimates with a loss of ν derivatives, 0 ≤ ν ≤ (𝓃 − 3)/2. Roughly speaking, we reduce this problem to estimating the L1 → L∞ norms of a finite number of operators with almost explicit kernels. These kernels are completely explicit when 4 ≤ 𝓃 ≤ 7 in the case of the wave group, and when 𝓃 = 4, 5 in the case of the Schr¨odinger group.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB