Show simple item record

dc.creatorBrackx, F.
dc.creatorDe Schepper, H.
dc.date2008-07-01
dc.date.accessioned2019-05-03T12:36:41Z
dc.date.available2019-05-03T12:36:41Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1518
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/84249
dc.descriptionIn this paper a condensed account is given of results connected to the Hilbert transform on the smooth boundary of a bounded domain in Euclidean space and some of its related concepts, such as Hardy spaces and the Cauchy integral, in a Clifford analysis context. Clifford analysis, also known as the theory of monogenic functions, is a multidimensional function theory, which is at the same time a generalization of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis. It offers a framework which is particularly suited for the integrated treatment of higher dimensional phenomena, without having to rely on tensorial approaches.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1518/1372
dc.sourceCUBO, A Mathematical Journal; Vol. 10 Núm. 2 (2008): CUBO, A Mathematical Journal; 83–106es-ES
dc.sourceCUBO, A Mathematical Journal; Vol 10 No 2 (2008): CUBO, A Mathematical Journal; 83–106en-US
dc.source0719-0646
dc.source0716-7776
dc.titleThe Hilbert Transform on a Smooth Closed Hypersurfaceen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record