Show simple item record

dc.creatorYano, Syouji
dc.date2008-03-01
dc.date.accessioned2019-05-03T12:36:42Z
dc.date.available2019-05-03T12:36:42Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1523
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/84254
dc.descriptionIn this paper, we determine the index of the Clifford algebras of 6-dimensional quadratic forms over a field whose characteristic is unequal to 2. In the case that the characteristic is equal to 2, we compute the Clifford algebras of the Scharlau’s transfer of 4-dimensional quadratic forms with trivial Arf invariant, and then investigate how the index of the Clifford algebra of q depends on orthogonal decompositions of q when q is a low dimensional quadratic form.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1523/1377
dc.sourceCUBO, A Mathematical Journal; Vol. 10 Núm. 1 (2008): CUBO, A Mathematical Journal; 19–32es-ES
dc.sourceCUBO, A Mathematical Journal; Vol 10 No 1 (2008): CUBO, A Mathematical Journal; 19–32en-US
dc.source0719-0646
dc.source0716-7776
dc.titleOn the Index of Clifford Algebras of Quadratic Formsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record