dc.creator | Fuenzalida, Ana | |
dc.creator | Labra, Alicia | |
dc.creator | Mallol, Cristian | |
dc.date | 1992-12-01 | |
dc.date.accessioned | 2019-05-03T12:36:45Z | |
dc.date.available | 2019-05-03T12:36:45Z | |
dc.identifier | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1562 | |
dc.identifier.uri | http://revistaschilenas.uchile.cl/handle/2250/84293 | |
dc.description | Bernstein algebras were introduced by P. Holgate in [1] to deal with the problem of populations which are in equilibrium after the second generation. In [3] we work with Weak Bernstein Jordan algebras, i.e. a class of commutative algebras with idempotent element and defined by relations. In [3, section 4] we prove that if A= Ke ⊕ U ⊕ V is the Pierce decomposition of A relative to the idempotent e, then the situations U3 = {0} and U2(UV) = {0} are independents of the different Pierce decompositions of A, then they are invariants of A. We say that A is orthogonal if U3 = {0} and quasiorthogonal if U2(UV) = {0}. The orthogonality case was treated in [2].
In this paper we prove that every Bernstein-Jordan algebra of dimension less than 11 is quasi-orthogonal. Moreover we prove that there exists only one non quasi-orthogonal Bernstein-Jordan algebra of dimension 11. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1562/1416 | |
dc.source | CUBO, A Mathematical Journal; Núm. 8 (1992): CUBO, Revista de Matemática; 1-6 | es-ES |
dc.source | CUBO, A Mathematical Journal; No 8 (1992): CUBO, Revista de Matemática; 1-6 | en-US |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.title | On Quasi orthogonal Bernstein Jordan algebras | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |