Show simple item record

dc.creatorFuenzalida, Ana
dc.creatorLabra, Alicia
dc.creatorMallol, Cristian
dc.date1992-12-01
dc.date.accessioned2019-05-03T12:36:45Z
dc.date.available2019-05-03T12:36:45Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1562
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/84293
dc.descriptionBernstein algebras were introduced by P. Holgate in [1] to deal with the problem of populations which are in equilibrium after the second generation. In [3] we work with Weak Bernstein Jordan algebras, i.e. a class of commutative algebras with idempotent element and defined by relations. In [3, section 4] we prove that if A= Ke ⊕ U ⊕ V is the Pierce decomposition of A relative to the idempotent e, then the situations U3 = {0} and U2(UV) = {0} are independents of the different Pierce decompositions of A, then they are invariants of A. We say that A is orthogonal if U3 = {0} and quasiorthogonal if U2(UV) = {0}. The orthogonality case was treated in [2]. In this paper we prove that every Bernstein-Jordan algebra of dimension less than 11 is quasi-orthogonal. Moreover we prove that there exists only one non quasi-orthogonal Bernstein-Jordan algebra of dimension 11.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1562/1416
dc.sourceCUBO, A Mathematical Journal; Núm. 8 (1992): CUBO, Revista de Matemática; 1-6es-ES
dc.sourceCUBO, A Mathematical Journal; No 8 (1992): CUBO, Revista de Matemática; 1-6en-US
dc.source0719-0646
dc.source0716-7776
dc.titleOn Quasi orthogonal Bernstein Jordan algebrasen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record