dc.creator | Catalán, Abdón | |
dc.creator | Costa, Roberto | |
dc.date | 1992-12-01 | |
dc.identifier | https://cubo.ufro.cl/ojs/index.php/cubo/article/view/1566 | |
dc.description | Let (A, 𠜔) be a baric algebra, we define the E-ideal associated to the train polynomial p(ð “ ) = ð “ n + y1𠜔(ð “ )ð “ n-1 + ... + yn-1𠜔(ð “ )n-1ð “ , by the ideal EA(p) de A generated by all p(a), a ⋲ A. Different train polynomials may give rise to the same E-ideal. Two train polynomials p(ð “ ) and q(ð “ ) are equivalent when EA(p) = EA(q). We prove tbat for baric algebras satisfying (ð “ ²)² = 𠜔(ð “ )³ð “ there are 3 equivalence classes of train polynomials. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | https://cubo.ufro.cl/ojs/index.php/cubo/article/view/1566/1420 | |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | en-US |
dc.source | CUBO, A Mathematical Journal; No. 8 (1992): CUBO, Revista de Matemática; 25-29 | en-US |
dc.source | CUBO, A Mathematical Journal; Núm. 8 (1992): CUBO, Revista de Matemática; 25-29 | es-ES |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.title | Acerca de álgebras báricas satisfaciendo \((x^2)^2 = w(x)^3x *\) | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |