Show simple item record

dc.creatorCatalán, Abdón
dc.creatorCosta, Roberto
dc.date1992-12-01
dc.identifierhttps://cubo.ufro.cl/ojs/index.php/cubo/article/view/1566
dc.descriptionLet (A, 𠜔) be a baric algebra, we define the E-ideal associated to the train polynomial p(ð “ ) = ð “ n + y1𠜔(ð “ )ð “ n-1 + ... + yn-1𠜔(ð “ )n-1ð “ , by the ideal EA(p) de A generated by all p(a), a ⋲ A. Different train polynomials may give rise to the same E-ideal. Two train polynomials p(ð “ ) and q(ð “ ) are equivalent when EA(p) = EA(q). We prove tbat for baric algebras satisfying (ð “ ²)² = 𠜔(ð “ )³ð “ there are 3 equivalence classes of train polynomials.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://cubo.ufro.cl/ojs/index.php/cubo/article/view/1566/1420
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/en-US
dc.sourceCUBO, A Mathematical Journal; No. 8 (1992): CUBO, Revista de Matemática; 25-29en-US
dc.sourceCUBO, A Mathematical Journal; Núm. 8 (1992): CUBO, Revista de Matemática; 25-29es-ES
dc.source0719-0646
dc.source0716-7776
dc.titleAcerca de álgebras báricas satisfaciendo \((x^2)^2 = w(x)^3x *\)en-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record