Show simple item record

dc.creatorLópez, Iris A.
dc.date2017-06-01
dc.identifierhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1576
dc.identifier10.4067/S0719-06462017000200011
dc.descriptionThe aim of this paper is to prove the hypercontractive propertie of the Dunkl-Ornstein-Uhlenbeck semigroup, {e(tLk)}t≥0. To this end, we prove that the Dunkl-Ornstein-Uhlenbeck differential operator Lk with k ≥ 0 and associated to the ℤd2 group, satisfies a curvature-dimension inequality, to be precise, a C(ρ, ∞)-inequality, with 0 ≤ ρ ≤ 1. As an application of this fact, we get a version of Meyer’s multipliers theorem and by means of this theorem and fractional derivatives, we obtain a characterization of Dunkl-potential spaces.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/1576/1430
dc.sourceCUBO, A Mathematical Journal; Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal; 11–31en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 19 Núm. 2 (2017): CUBO, A Mathematical Journal; 11–31es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectDunkl-Ornstein-Uhlenbeck operatoren-US
dc.subjectgeneralized Hermite polynomialen-US
dc.subjectsquared field operatoren-US
dc.subjectMeyer’s multiplier theoremen-US
dc.subjectDunkl-potential spaceen-US
dc.subjectfractional integralen-US
dc.subjectfractional derivativeen-US
dc.titleOn the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroupen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record