dc.creator | López, Iris A. | |
dc.date | 2017-06-01 | |
dc.identifier | https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1576 | |
dc.identifier | 10.4067/S0719-06462017000200011 | |
dc.description | The aim of this paper is to prove the hypercontractive propertie of the Dunkl-Ornstein-Uhlenbeck semigroup, {e(tLk)}t≥0. To this end, we prove that the Dunkl-Ornstein-Uhlenbeck differential operator Lk with k ≥ 0 and associated to the ℤd2 group, satisfies a curvature-dimension inequality, to be precise, a C(ρ, ∞)-inequality, with 0 ≤ ρ ≤ 1. As an application of this fact, we get a version of Meyer’s multipliers theorem and by means of this theorem and fractional derivatives, we obtain a characterization of Dunkl-potential spaces. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | https://revistas.ufro.cl/ojs/index.php/cubo/article/view/1576/1430 | |
dc.source | CUBO, A Mathematical Journal; Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal; 11–31 | en-US |
dc.source | CUBO, A Mathematical Journal; Vol. 19 Núm. 2 (2017): CUBO, A Mathematical Journal; 11–31 | es-ES |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.subject | Dunkl-Ornstein-Uhlenbeck operator | en-US |
dc.subject | generalized Hermite polynomial | en-US |
dc.subject | squared field operator | en-US |
dc.subject | Meyer’s multiplier theorem | en-US |
dc.subject | Dunkl-potential space | en-US |
dc.subject | fractional integral | en-US |
dc.subject | fractional derivative | en-US |
dc.title | On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |