Show simple item record

dc.creatorBloch, Spencer
dc.creatorEsnault, Helene
dc.date2003-10-01
dc.date.accessioned2019-05-03T12:36:52Z
dc.date.available2019-05-03T12:36:52Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1675
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/84400
dc.descriptionA fano variety is a smooth, geometrically connected variety over a field, for which the dualizing sheaf is anti-ample. For example the projective space, more generally flag varieties are Fano varieties, as well as hypersurfaces of degree d ≤ 𝑛 in ℙ𝑛. We discuss the existence and number of rational points over a finite field, the Hodge type over the complex numbers, and the motivic conjectures which are controlling those invariants. We present a geometric version of it.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1675/1527
dc.sourceCUBO, A Mathematical Journal; Vol. 5 Núm. 3 (2003): CUBO, Matemática Educacional; 248–259es-ES
dc.sourceCUBO, A Mathematical Journal; Vol 5 No 3 (2003): CUBO, Matemática Educacional; 248–259en-US
dc.source0719-0646
dc.source0716-7776
dc.titleCongruences for the Number of Rational Points, Hodge Type and Motivic Conjectures for Fano Varietiesen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record