dc.creator | Bloch, Spencer | |
dc.creator | Esnault, Helene | |
dc.date | 2003-10-01 | |
dc.date.accessioned | 2019-05-03T12:36:52Z | |
dc.date.available | 2019-05-03T12:36:52Z | |
dc.identifier | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1675 | |
dc.identifier.uri | http://revistaschilenas.uchile.cl/handle/2250/84400 | |
dc.description | A fano variety is a smooth, geometrically connected variety over a field, for which the dualizing sheaf is anti-ample. For example the projective space, more generally flag varieties are Fano varieties, as well as hypersurfaces of degree d ≤ 𝑛 in ℙ𝑛. We discuss the existence and number of rational points over a finite field, the Hodge type over the complex numbers, and the motivic conjectures which are controlling those invariants. We present a geometric version of it. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1675/1527 | |
dc.source | CUBO, A Mathematical Journal; Vol. 5 Núm. 3 (2003): CUBO, Matemática Educacional; 248–259 | es-ES |
dc.source | CUBO, A Mathematical Journal; Vol 5 No 3 (2003): CUBO, Matemática Educacional; 248–259 | en-US |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.title | Congruences for the Number of Rational Points, Hodge Type and Motivic Conjectures for Fano Varieties | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |