Show simple item record

dc.creatorLins, Sóstenes
dc.creatorSilva, Valdenberg
dc.date2003-10-01
dc.date.accessioned2019-05-03T12:36:52Z
dc.date.available2019-05-03T12:36:52Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1680
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/84405
dc.descriptionIf a graph GM is embedded into a closed surface S such that S\GM is a collection of disjoint open discs, then M = 3D(GM, S) is called a map. A zigzag in a map M is a closed path which alternates choosing, at each star of a vertex, the leftmost and the rightmost possibilities for its next edge. If a map has a single zigzag we show that the cyclic ordering of the edges along it induces linear transformations, Cp and Cp∼ whose images and kernels are respectively the cycle and bond spaces (over GF(2)) of GM and GD, where D= 3D(GD, S) is the dual map of M. We prove that Im(cp o cp∼) is the intersection of the cycle spaces of GM and GD, and that the dimension of this subspace is connectivity of S. Finally, if M has also a single face, this face induces a linear transformation cD which is invertible: we show that C-1D = 3Dcp∼. en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1680/1532
dc.sourceCUBO, A Mathematical Journal; Vol. 5 Núm. 3 (2003): CUBO, Matemática Educacional; 330-341es-ES
dc.sourceCUBO, A Mathematical Journal; Vol 5 No 3 (2003): CUBO, Matemática Educacional; 330-341en-US
dc.source0719-0646
dc.source0716-7776
dc.titleOn Maps with a Single Zigzagen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record