• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item

Jordan normal form via ODE's

Author
Hacon, Derek

Full text
http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1783
Abstract
In text books on differential equations the system of ordinary differential equations with constant coefficients X' = AX is often solved by reduction (by an invertible change of variables X = PY) to the simpler system Y' = JY where J is the Jordan canonical form of A. Here we do things the other way around and deduce the existence of J and P by comparing two types of solutions of the system X' = AX. The proof provides a straight-forward algorithm for calculating the matrices J and P above. Apart from some elementary considerations on (formal) solutions of systems of ODE's with constant coefficients, the main ingredient of the proof (and of the resulting algorithm) is one which comes up in other approaches, namely the reduction of polynomial matrices (in one variable) to diagonal form by row and column operations.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB