Show simple item record

dc.creatorMarshall Ash, J.
dc.date2002-06-01
dc.date.accessioned2019-05-03T12:36:59Z
dc.date.available2019-05-03T12:36:59Z
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1786
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/84510
dc.descriptionFive uniqueness questions for multiple trigonometric series are surveyed. If a multiple trigonometric series converges everywhere to zero in the sense of spherical convergence, of unrestricted rectangular convergence, or of iterated convergence, then that series must have every coefficient being zero. But the cases of square convergence and restricted rectangular convergence lead to open questions.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/1786/1636
dc.sourceCUBO, A Mathematical Journal; Vol. 4 Núm. 2 (2002): CUBO, Matemática Educacional; 93–121es-ES
dc.sourceCUBO, A Mathematical Journal; Vol 4 No 2 (2002): CUBO, Matemática Educacional; 93–121en-US
dc.source0719-0646
dc.source0716-7776
dc.titleUniqueness for higher dimensional trigonometric seriesen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record