Show simple item record

dc.creatordel Rio, Rafael
dc.creatorFranco, Asaf L.
dc.creatorLara, Jose A.
dc.date2018-07-31
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/2045
dc.identifier10.4067/S0719-06462018000200001
dc.descriptionIn this note we give a direct proof of the F. Riesz representation theorem which characterizes the linear functionals acting on the vector space of continuous functions defined on a set K. Our start point is the original formulation of Riesz where K is a closed interval. Using elementary measure theory, we give a proof for the case K is an arbitrary compact set of real numbers. Our proof avoids complicated arguments commonly used in the description of such functionals.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/2045/1841
dc.sourceCUBO, A Mathematical Journal; Vol. 20 No. 2 (2018); 01–12en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 20 Núm. 2 (2018); 01–12es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectRiesz representation theoremen-US
dc.subjectpositive linear functionalsen-US
dc.subjectRiemann Stieltjes integralen-US
dc.titleAn approach to F. Riesz representation Theoremen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record