dc.creator | del Rio, Rafael | |
dc.creator | Franco, Asaf L. | |
dc.creator | Lara, Jose A. | |
dc.date | 2018-07-31 | |
dc.identifier | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/2045 | |
dc.identifier | 10.4067/S0719-06462018000200001 | |
dc.description | In this note we give a direct proof of the F. Riesz representation theorem which characterizes the linear functionals acting on the vector space of continuous functions defined on a set K. Our start point is the original formulation of Riesz where K is a closed interval. Using elementary measure theory, we give a proof for the case K is an arbitrary compact set of real numbers. Our proof avoids complicated arguments commonly used in the description of such functionals. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad de La Frontera. Temuco, Chile. | en-US |
dc.relation | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/2045/1841 | |
dc.source | CUBO, A Mathematical Journal; Vol. 20 No. 2 (2018); 01–12 | en-US |
dc.source | CUBO, A Mathematical Journal; Vol. 20 Núm. 2 (2018); 01–12 | es-ES |
dc.source | 0719-0646 | |
dc.source | 0716-7776 | |
dc.subject | Riesz representation theorem | en-US |
dc.subject | positive linear functionals | en-US |
dc.subject | Riemann Stieltjes integral | en-US |
dc.title | An approach to F. Riesz representation Theorem | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |