Show simple item record

dc.creatorJeyanthi, P.
dc.creatorMaheswari, A.
dc.date2018-07-31
dc.identifierhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/2046
dc.identifier10.4067/S0719-06462018000200013
dc.descriptionLet G be a graph with p vertices and q edges and A = {1, 3, ..., q} if q is odd or A = {1, 3, ..., q + 1} if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling f : V(G) → A that induces an edge labeling f∗ defined by f∗ (uv) = f(u) + f(v) for all edges uv such that for all a and b in A, |vf(a) − vf(b)| ≤ 1 and the induced edge labels are 2, 4, ..., 2q where vf(a) be the number of vertices v with f(v) = a for a ∈ A. A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph. Here, we prove that the subdivision of double triangular snake (S(D(Tn))), subdivision of double quadrilateral snake (S(D(Qn))), DA(Qm) ⊙ nK1 and DA(Tm) ⊙ nK1 are odd vertex equitable even graphs.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttp://revistas.ufro.cl/ojs/index.php/cubo/article/view/2046/1840
dc.sourceCUBO, A Mathematical Journal; Vol. 20 No. 2 (2018); 13–21en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 20 Núm. 2 (2018); 13–21es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectOdd vertex equitable even labelingen-US
dc.subjectodd vertex equitable even graphen-US
dc.subjectdouble triangular snakeen-US
dc.subjectsubdivision of double quadrilateral snakeen-US
dc.subjectdouble alternate triangular snakeen-US
dc.subjectdouble alternate quadrilateral snakeen-US
dc.subjectsubdivision graphen-US
dc.titleOdd Vertex Equitable Even Labeling of Cycle Related Graphsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record