Show simple item record

dc.creatorMa,Yuan-Yuan
dc.creatorGuo,Xiu-Lin
dc.creatorLiu,Bin-Hui
dc.creatorLiu,Zi-Hui
dc.creatorShao,Hong-Bo
dc.date2011-05-01
dc.date.accessioned2019-05-03T12:44:50Z
dc.date.available2019-05-03T12:44:50Z
dc.identifierhttps://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-34582011000300004
dc.identifier.urihttp://revistaschilenas.uchile.cl/handle/2250/85204
dc.descriptionThe changes of cell ultra structure as well as Ca2+ homeostasis involved in the drought-induced maize leaf senescence was investigated. Meanwhile, many indicatives of leaf senescence including thiobarbituric acid reactive substance (MDA), electrolyte leakage (EL), and chlorophyll along with soluble proteins were also detected during the process. The Polyethylene glycol6000(PEG6000)-incubated detached leaves showed a slight increase in the MDA content and electrolyte leakage during the first 30 min of our detection, which was corresponded to an unobvious alteration of the cell ultrastructure. Other typical senescence parameters measured in whole leaf exhibited a moderate elevation as well. Thereafter, however, the EL and MDA rose to a large extent, which was correlated with a dramatic damage to the cell ultrastructure with concomitant sharp decrease in the chlorophyll and soluble proteins content. The deposits of calcium antimonite, being an indicator for Ca2+ localization, were observed in the vacuoles as well as intercellular spaces in the leaves grown under normal condition. Nevertheless, after PEG treatment, it was revealed a distinct increment of Ca2+ in the cytoplasm as well as chloroplasts and nuclei. Moreover, with long-lasting treatment of PEG to the detached leaves, the concentration of Ca2+ as described above showed a continuous increment which was consist with the remarked alteration of physiological parameters and severe damage to the ultrastructure of cells, all of which indicated the leaf senescence. Such drought-induced leaf senescence might result from a loss of the cell's capability to extrude Ca2+. All above findings give us a good insight into the important role of Ca2+ homeostasis in the process of leaf senescence accelerated by the drought stress.
dc.formattext/html
dc.languageen
dc.publisherPontificia Universidad Católica de Valparaíso
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceElectronic Journal of Biotechnology v.14 n.3 2011
dc.subjectCa2+ homeostasis
dc.subjectdrought
dc.subjectleaf senescence
dc.subjectmaize
dc.subjectorganelle ultrastructure
dc.subjectsignal transduction
dc.titleThe changes of organelle ultrastructure and Ca2+ homeostasis in maize mesophyll cells during the process of drought-induced leaf senescence


This item appears in the following Collection(s)

Show simple item record