• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Pontificia Universidad Católica de Valparaíso
  • Electronic Journal of Biotechnology
  • View Item
  •   Home
  • Pontificia Universidad Católica de Valparaíso
  • Electronic Journal of Biotechnology
  • View Item

Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production

Author
Begum,Most. Ferdousi

Alimon,Abdul Razak

Full text
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-34582011000500003
Abstract
The recent interest in bioconversion of agricultural and industrial wastes to chemical feedstock has led to extensive studies on cellulolytic enzymes produced by microorganisms. In the present study three lignocellulosic substrates viz. sugarcane bagasse, sawdust and water hyacinth were pre-treated with alkali and enzyme and their effect on bioconversion has been investigated. The ability of selected substrates for induction of cellulase enzyme by A. oryzae ITCC 4857.01 and for the potentiality of the induced enzyme to saccharify the substrates were also assessed. The maximum degree of conversion of substrate (0.415%) and improved specific substrate consumption (0.99 g substrate/g dry biomass) was exhibited in sugarcane bagasse after alkali treatment at 96 hrs. Both alkali-treatment and enzyme-treatment, water hyacinth was the best for cellulase induction and showed maximum endoglucanase activity of 11.42 U/ml. Reducing sugar yield ranged from 1.12 mg/ml for enzyme treated sawdust at 48 hrs to 7.53 mg/ml for alkali treated sugarcane bagasse at 96 hrs. Alkali-treated sugarcane bagasse gave the highest saccharification rate of 9.03% after 96 hrs. The most resistant substrate was sawdust which produced 5.92% saccharification by alkaline treatment. The saccharification of lignocellulosic substrates by enzyme produced by A. oryzae ITCC 4857.01 indicates the enzymes specificity towards the substrates. The use of such enzyme in lingo-cellulose hydrolysis will lead to efficient conversion of cellulose materials to other important products.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB