• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Pontificia Universidad Católica de Valparaíso
  • Electronic Journal of Biotechnology
  • View Item
  •   Home
  • Pontificia Universidad Católica de Valparaíso
  • Electronic Journal of Biotechnology
  • View Item

Over-expression of Mycobacterium neoaurum 3-ketosteroid-∆1-dehydrogenase in Corynebacterium crenatum for efficient bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione

Author
Zhang,Xian

Wu,Dan

Yang,Taowei

Xu,Meijuan

Rao,Zhiming

Full text
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-34582016000600013
Abstract
Background: 3-Ketosteroid-∆¹-dehydrogenase (KSDD), a flavoprotein enzyme, catalyzes the bioconversion of 4-androstene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). To date, there has been no report about characterization of KSDD from Mycobacterium neoaurum strains, which were usually employed to produce AD or ADD by fermentation. Results: In this work, Corynebacterium crenatum was chosen asa new host for heterologous expression of KSDD from M. neoaurum JC-12 after codon optimization of the KSDD gene. SDS-PAGE and western blotting results indicated that the recombinant C. crenatum harboring the optimized ksdd (ksdd n) gene showed significantly improved ability to express KSDD. The expression level of KSDD was about 1.6-fold increased C. crenatum after codon optimization. After purification of the protein, we first characterized KSDD from M. neoaurum JC-12, and the results showed that the optimum temperature and pH for KSDD activity were 30°C and pH 7.0, respectively. The Km and Vmax values of purified KSDD were 8.91 µM and 6.43 mM/min. In this work, C. crenatum as a novel whole-cell catalyst was also employed and validated for bioconversion of AD to ADD. The highest transformation rate of AD to ADD by recombinant C. crenatum was about 83.87% after 10 h reaction time, which was more efficient than M. neoaurum JC-12 (only 3.56% at 10 h). Conclusions: In this work, basing on the codon optimization, overexpression, purification and characterization of KSDD, we constructed a novel system, the recombinant C. crenatum SYPA 5-5 expressing KSDD, to accumulate ADDfromADefficiently. This work provided new insights into strengthening sterol catabolism by overexpressing the key enzyme KSDD, for efficient ADD production.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB