dc.creator | Fadli, B. | |
dc.creator | Zeglami, D. | |
dc.creator | Kabbaj, S. | |
dc.date | 2017-12-01 | |
dc.identifier | http://www.revistaproyecciones.cl/article/view/2534 | |
dc.description | We determine the continuous solutions ʄ, g :G → C of each of the two functional equations
∫G{ʄ,(xyt) – ʄ(σ(y)xt)}dμ(t) = ʄ(x)g(y), x, y ∈ G,
∫G{ʄ,(xyt) – ʄ(σ(y)xt)}dμ(t) = g(x)ʄ(y), x, y ∈ G,
where G is a locally compact group, σ is a continuous involutive automorphism on G, and μ is a compactly supported, complex-valued Borel measure on G. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | http://www.revistaproyecciones.cl/article/view/2534/2136 | |
dc.rights | Derechos de autor 2017 Proyecciones. Journal of Mathematics | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 36 No 4 (2017); 545-566 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 36 Núm. 4 (2017); 545-566 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.title | The generalized Van Vleck's equation on locally compact groups. | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |