dc.creator | Harary, Frank | |
dc.creator | Haynes, Teresa W. | |
dc.creator | Lewinter, Martin | |
dc.date | 2018-04-03 | |
dc.date.accessioned | 2019-06-28T17:06:20Z | |
dc.date.available | 2019-06-28T17:06:20Z | |
dc.identifier | http://www.revistaproyecciones.cl/article/view/2634 | |
dc.identifier | 10.22199/S07160917.1993.0002.00005 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/101002 | |
dc.description | Given a graph G = (V, E), set S ⊂ V is a dominating set if each node of V - S is adjacent to at least one node in S. The domination number of G is the smallest size of a dominating set and the codomination number is the domination number of its complement. We determine the codomination number of a graph having diameter at least three. Further we explore the effects of this result on the open problem of characterizing graphs having equal domination and codomination numbers. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | http://www.revistaproyecciones.cl/article/view/2634/2231 | |
dc.rights | Derechos de autor 1993 Proyecciones. Journal of Mathematics | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 12 No 2 (1993); 149-153 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 12 Núm. 2 (1993); 149-153 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.title | On the codomination number of a graph | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |