Show simple item record

dc.creatorHarary, Frank
dc.creatorHaynes, Teresa W.
dc.creatorLewinter, Martin
dc.date2018-04-03
dc.date.accessioned2019-06-28T17:06:20Z
dc.date.available2019-06-28T17:06:20Z
dc.identifierhttp://www.revistaproyecciones.cl/article/view/2634
dc.identifier10.22199/S07160917.1993.0002.00005
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/101002
dc.descriptionGiven a graph G = (V, E), set S ⊂ V is a dominating set if each node of V - S is adjacent to at least one node in S. The domination number of G is the smallest size of a dominating set and the codomination number is the domination number of its complement. We determine the codomination number of a graph having diameter at least three. Further we explore the effects of this result on the open problem of characterizing graphs having equal domination and codomination numbers.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/2634/2231
dc.rightsDerechos de autor 1993 Proyecciones. Journal of Mathematicses-ES
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 12 No 2 (1993); 149-153en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 12 Núm. 2 (1993); 149-153es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleOn the codomination number of a graphes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record