Show simple item record

dc.creatorGonzález-Guzmán, Jorge
dc.date2018-04-03
dc.date.accessioned2019-06-28T17:06:20Z
dc.date.available2019-06-28T17:06:20Z
dc.identifierhttp://www.revistaproyecciones.cl/article/view/2639
dc.identifier10.22199/S07160917.1994.0001.00003
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/101007
dc.descriptionA SIRS epidemiological model with two subpopulations and vital dynamics is analyzed. Both subpopulations sizes are considered constant by assuming that the birth and the death rates are equal. We consider the case where one subpopulation is a core, that is a very infectious small group, responsible for a big fraction of the incidence. For this case thresholds are determined and the main equilibrium points for the four dimensional system are shown to be globally stable by using a known Theorem of Markus on asymptotically autonomous systems. This system models the dynamics of typhoid fever , where the core is the group of food handlers . The results presented in this work are an extension of those presented in [3].es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/2639/2236
dc.rightsDerechos de autor 1994 Proyecciones. Journal of Mathematicses-ES
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 13 No 1 (1994); 09-17en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 13 Núm. 1 (1994); 09-17es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleGlobal stability results on an epidemiological model with a core group (a note on the paper "local stability results on a model for typhoid fever with a core group")es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record