dc.creator | Grinnell, Raymond J. | |
dc.date | 2018-04-03 | |
dc.date.accessioned | 2019-06-28T17:06:21Z | |
dc.date.available | 2019-06-28T17:06:21Z | |
dc.identifier | http://www.revistaproyecciones.cl/article/view/2697 | |
dc.identifier | 10.22199/S07160917.1995.0001.00004 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/101025 | |
dc.description | Let G be an infinite compact abelian group and let Ꞅ denote its dual group. A borel measure µ on G is called Lorentz-improving if there existe p, q1, and q2, where 1 < p < ꝏ and 1 ≤ q1 ≤ q2 ≤ ꝏ, such that µ * L (p, q2) ⊆ L (p, q1). A detailed exposition of our recent characterization of Lorentz-improving measures is presented here. In this result Lorentz-improving measures are characterized in terms of the size of the sets {ϒ ∊ Ꞅ : │ µ (ϒ) │ > ∊ } and in terms of n-fold convolution powers. This characterization is analogous to a known characterization of LP-improving measures due to Hare. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | http://www.revistaproyecciones.cl/article/view/2697/2272 | |
dc.rights | Derechos de autor 1995 Proyecciones. Journal of Mathematics | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 14 No 1 (1995); 43-50 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 14 Núm. 1 (1995); 43-50 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.title | A characterization of Lorentz-improving measures | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |