Show simple item record

dc.creatorGrinnell, Raymond J.
dc.date2018-04-03
dc.date.accessioned2019-06-28T17:06:21Z
dc.date.available2019-06-28T17:06:21Z
dc.identifierhttp://www.revistaproyecciones.cl/article/view/2697
dc.identifier10.22199/S07160917.1995.0001.00004
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/101025
dc.descriptionLet G be an infinite compact abelian group and let Ꞅ denote its dual group. A borel measure µ on G is called Lorentz-improving if there existe p, q1, and q2, where 1 < p < ꝏ and 1 ≤ q1 ≤ q2 ≤ ꝏ, such that µ * L (p, q2) ⊆  L (p, q1). A detailed exposition of our recent characterization of Lorentz-improving measures is presented here. In this result Lorentz-improving measures are characterized in terms of the size of the sets {ϒ ∊ Ꞅ : │ µ (ϒ) │  > ∊ } and in terms of n-fold convolution powers. This characterization is analogous to a known characterization of LP-improving measures due to Hare.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/2697/2272
dc.rightsDerechos de autor 1995 Proyecciones. Journal of Mathematicses-ES
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 14 No 1 (1995); 43-50en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 14 Núm. 1 (1995); 43-50es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleA characterization of Lorentz-improving measureses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record