Show simple item record

dc.creatorAbujabal, H. A. S.
dc.creatorObaid, M. A.
dc.creatorKhan, M. A.
dc.date2018-04-04
dc.date.accessioned2019-06-28T17:06:22Z
dc.date.available2019-06-28T17:06:22Z
dc.identifierhttp://www.revistaproyecciones.cl/article/view/2704
dc.identifier10.22199/S07160917.1996.0001.00005
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/101032
dc.descriptionThe main theorem of this paper is that a ring R with unity is commutative if and only if there is a nil subset B of R such thatl. for each x ∊ R, either x ∊ Z(R) or there is a polynormial f over Z with x - x2 f (x)  ∊ B;2. for each x, y x ∊ R, there are non-negative integers n > 1, m, r, s depending on a pair of ring elements x,y with x(xmy ± xrynxs) - (xm y ± xrynxs)x = 0.A related result for a nil commutative subset of R is given and the restrictions on the hypothesis of our result are justified by examples.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/2704/2278
dc.rightsDerechos de autor 1996 Proyecciones. Journal of Mathematicses-ES
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 15 No 1 (1996); 91-99en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 15 Núm. 1 (1996); 91-99es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleOn commutativity of rings with constraints involving a nil subsetes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record