dc.creator | Abujabal, H. A. S. | |
dc.creator | Obaid, M. A. | |
dc.creator | Khan, M. A. | |
dc.date | 2018-04-04 | |
dc.date.accessioned | 2019-06-28T17:06:22Z | |
dc.date.available | 2019-06-28T17:06:22Z | |
dc.identifier | http://www.revistaproyecciones.cl/article/view/2704 | |
dc.identifier | 10.22199/S07160917.1996.0001.00005 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/101032 | |
dc.description | The main theorem of this paper is that a ring R with unity is commutative if and only if there is a nil subset B of R such thatl. for each x ∊ R, either x ∊ Z(R) or there is a polynormial f over Z with x - x2 f (x) ∊ B;2. for each x, y x ∊ R, there are non-negative integers n > 1, m, r, s depending on a pair of ring elements x,y with x(xmy ± xrynxs) - (xm y ± xrynxs)x = 0.A related result for a nil commutative subset of R is given and the restrictions on the hypothesis of our result are justified by examples. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | http://www.revistaproyecciones.cl/article/view/2704/2278 | |
dc.rights | Derechos de autor 1996 Proyecciones. Journal of Mathematics | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 15 No 1 (1996); 91-99 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 15 Núm. 1 (1996); 91-99 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.title | On commutativity of rings with constraints involving a nil subset | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |