dc.creator | Jeyanthi, P. | |
dc.creator | Maheswari, A. | |
dc.date | 2018-11-22 | |
dc.identifier | http://www.revistaproyecciones.cl/article/view/3271 | |
dc.description | Let G be a graph with p vertices and q edges and A = {1, 3, ..., q} if q is odd or A = {1, 3, ..., q + 1} if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling f : V (G) → A that induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv such that for all a and b in A, |vf (a) − vf (b)| ≤ 1 and the induced edge labels are 2, 4, ..., 2q where vf (a) be the number of vertices v with f(v) = a for a ∈ A. A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph. Here, we prove that the graph nC4-snake, CS(n1, n2, ..., nk), ni ≡ 0(mod4),ni ≥ 4, be a generalized kCn -snake, TÔQSn and TÕQSn are odd vertex equitable even graphs. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | http://www.revistaproyecciones.cl/article/view/3271/3008 | |
dc.rights | Derechos de autor 2018 Proyecciones. Journal of Mathematics | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 37 No 4 (2018); 613-625 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 37 Núm. 4 (2018); 613-625 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.title | Odd Vertex equitable even labeling of cyclic snake related graphs. | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |