dc.creator | Jeyanthi, P. | |
dc.creator | Maheswari, A. | |
dc.creator | Vijayalakshmi, M. | |
dc.date | 2019-02-25 | |
dc.identifier | http://www.revistaproyecciones.cl/article/view/3409 | |
dc.description | Let G be a (p,q) graph. A mapping f : V (G) → {0, 1, 2} is called 3-product cordial labeling if |v????(i) − v???? (j)| ≤ 1 and |e???? (i) − e???? (j)| ≤ 1 for any i, j ∈ {0, 1, 2},where v???? (i) denotes the number of vertices labeled with i, e???? (i) denotes the number of edges xy with ????(x)????(y) ≡ i(mod3). A graph with 3-product cordial labeling is called 3-product cordial graph. In this paper we investigate the 3-product cordial behavior of alternate triangular snake, double alternate triangular snake and triangular snake graphs. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | http://www.revistaproyecciones.cl/article/view/3409/3097 | |
dc.rights | Derechos de autor 2019 Proyecciones. Revista de Matemática | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 38 No 1 (2019); 13-30 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 38 Núm. 1 (2019); 13-30 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.title | 3-product cordial labeling of some snake graphs. | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |