Show simple item record

dc.creatorJeyanthi, P.
dc.creatorMaheswari, A.
dc.creatorVijayalakshmi, M.
dc.date2019-02-25
dc.identifierhttp://www.revistaproyecciones.cl/article/view/3409
dc.descriptionLet G be a (p,q) graph. A mapping f : V (G) → {0, 1, 2} is called 3-product cordial labeling if |v????(i) − v???? (j)| ≤ 1 and |e???? (i) − e???? (j)| ≤ 1 for any i, j ∈ {0, 1, 2},where v???? (i) denotes the number of vertices labeled with i, e???? (i) denotes the number of edges xy with ????(x)????(y) ≡ i(mod3). A graph with 3-product cordial labeling is called 3-product cordial graph. In this paper we investigate the 3-product cordial behavior of alternate triangular snake, double alternate triangular snake and triangular snake graphs.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/3409/3097
dc.rightsDerechos de autor 2019 Proyecciones. Revista de Matemáticaes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 38 No 1 (2019); 13-30en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 38 Núm. 1 (2019); 13-30es-ES
dc.source0717-6279
dc.source0716-0917
dc.title3-product cordial labeling of some snake graphs.en-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record