Show simple item record

dc.creatorPonraj, R.
dc.creatorAdaickalam, M. Maria
dc.creatorKala, R.
dc.date2019-02-25
dc.identifierhttp://www.revistaproyecciones.cl/article/view/3413
dc.descriptionLet G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the umber of vertices labelled with x, ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of Tn ʘK1, Tn ʘ2K1, Tn ʘK2, A(Tn)ʘK1, A(Tn)ʘ 2K1, A(Tn) ʘ K2.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/3413/3101
dc.rightsDerechos de autor 2019 Proyecciones. Revista de Matemáticaes-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 38 No 1 (2019); 83-96en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 38 Núm. 1 (2019); 83-96es-ES
dc.source0717-6279
dc.source0716-0917
dc.title3-difference cordiality of some corona graphs.en-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record