Show simple item record

dc.creatorY. B., Venkatakrishnan
dc.creatorHari, Naresh Kumar
dc.creatorChidambaram, Natarajan
dc.date2019-05-30
dc.date.accessioned2019-06-28T17:07:09Z
dc.date.available2019-06-28T17:07:09Z
dc.identifierhttp://www.revistaproyecciones.cl/article/view/3573
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/101168
dc.descriptionA vertex v of a graph G = (V,E) is said to ve-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set if every edge of E is ve-dominated by at least one vertex of S. The minimum cardinality of a vertex-edge dominating set of G is the vertex-edge domination number γve(G) . In this paper we prove (γt(T)−ℓ+1)/2 ≤ γve(T) ≤(γt(T)+ℓ−1)/2 and characterize trees attaining each of these bounds.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/3573/3169
dc.rightsDerechos de autor 2019 Proyecciones. Revista de Matemáticaes-ES
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 38 No 2 (2019); 295-304en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 38 Núm. 2 (2019); 295-304es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleTotal domination and vertex-edge domination in trees.en-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record