dc.creator | Y. B., Venkatakrishnan | |
dc.creator | Hari, Naresh Kumar | |
dc.creator | Chidambaram, Natarajan | |
dc.date | 2019-05-30 | |
dc.date.accessioned | 2019-06-28T17:07:09Z | |
dc.date.available | 2019-06-28T17:07:09Z | |
dc.identifier | http://www.revistaproyecciones.cl/article/view/3573 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/101168 | |
dc.description | A vertex v of a graph G = (V,E) is said to ve-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set if every edge of E is ve-dominated by at least one vertex of S. The minimum cardinality of a vertex-edge dominating set of G is the vertex-edge domination number γve(G) . In this paper we prove (γt(T)−ℓ+1)/2 ≤ γve(T) ≤(γt(T)+ℓ−1)/2 and characterize trees attaining each of these bounds. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | http://www.revistaproyecciones.cl/article/view/3573/3169 | |
dc.rights | Derechos de autor 2019 Proyecciones. Revista de Matemática | es-ES |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0 | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 38 No 2 (2019); 295-304 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 38 Núm. 2 (2019); 295-304 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.title | Total domination and vertex-edge domination in trees. | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |
dc.type | text | en-US |