TOPOLOGIES POLAIRES COMPATIBLES AVEC UNE DUALITÉ SÉPARANTE SUR UN CORPS VALUÉ NON-ARCHIMÉDIEN
Author
AMEZIANE HASSANI,R.
BABAHMED,M.
Abstract
In this paper, we deal with polar topologies in separated dual pair (X, Y) of vector spaces over a non-archimedean valued field. We study compatible polar topologies, and we give some results characterizing specific subsets of X related to these topologies, especially if the field K is spherically complete or the compatible topology is polar or strongly polar. Furthermore, we investigate some topological properties in the duality (X, Y) such as barreldness and reflexivity