Show simple item record

dc.creatorYaying, Taja
dc.date2019-08-14
dc.date.accessioned2019-09-11T12:05:53Z
dc.date.available2019-09-11T12:05:53Z
dc.identifierhttp://www.revistaproyecciones.cl/article/view/2832
dc.identifier10.22199/issn.0717-6279-2019-03-0031
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/108847
dc.descriptionRecently Baliarsingh and Dutta [11], [12] introduced the fractional difference operator Δα, defined by Δα(xk) =    and defined new classes of generalized difference sequence spaces of fractional order X(Γ, Δα, u) where X = {????∞, c, c0} . More recently, Kadak [21] studied strongly Cesàro and statistical difference sequence space of fractional order involving lacunary sequences using the fractional difference operator  is is any fixed sequence of positive real or complex numbers. Following Baliarsingh and Dutta [11], [12] and Kadak [21], we introduce paranormed difference sequence spaces  of fractional order involving lacunary sequence, θ and modulus function, f. We investigate topological structures of these spaces and examine various inclusion relations.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttp://www.revistaproyecciones.cl/article/view/2832/3217
dc.rightsDerechos de autor 2019 Taja Yayinges-ES
dc.rightshttp://creativecommons.org/licenses/by/4.0es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 38 No 3 (2019); 485-497en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 38 Núm. 3 (2019); 485-497es-ES
dc.source0717-6279
dc.source0716-0917
dc.titleOn a new class of generalized difference sequence spaces of fractional order defined by modulus functionen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record