dc.creator | Callejas-Vedregal, Roberto | |
dc.creator | Jorge Pérez, Víctor H. | |
dc.creator | Saia, M. J. | |
dc.creator | Tomazella., J. M. | |
dc.date | 2013-02-19 | |
dc.date.accessioned | 2019-11-14T11:58:48Z | |
dc.date.available | 2019-11-14T11:58:48Z | |
dc.identifier | https://www.revistaproyecciones.cl/article/view/1133 | |
dc.identifier | 10.4067/S0716-09172012000400002 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/112924 | |
dc.description | We investigate the constancy of the Le numbers of one parameter deformations F :(C X Cn, 0) — (C, 0) of holomorphic germs of functions f :(Cn, 0) — (C, 0) which have singular set with any dimension s > 1. WecharacterizeLe constant deformations in terms of the non-splitting of the polar varieties and also from the integral closure of the ideal Jz (F) in On+1 generated by the partial derivatives of F with respect to the variables z = (z!,...,zn) | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | https://www.revistaproyecciones.cl/article/view/1133/1146 | |
dc.rights | Derechos de autor 2012 Proyecciones. Journal of Mathematics | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 31 No 4 (2012); 333-343 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 31 Núm. 4 (2012); 333-343 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.subject | Lê constant families | es-ES |
dc.subject | polar varieties | es-ES |
dc.subject | familias constantes de Lê | es-ES |
dc.subject | variedades polares. | es-ES |
dc.title | Lê constant families of singular hypersurfaces | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |