dc.creator | Hejazian, Shirin | |
dc.creator | Mirzavaziri, Madjid | |
dc.creator | Tehrani, Elahe Omidvar | |
dc.date | 2011-01-07 | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/101-108 | |
dc.identifier | 10.4067/S0716-09172010000200003 | |
dc.description | Let A be an algebra. A sequence {dn} of linear mappings on A is called a higher derivation if for each a, b ∈ A and each nonnegative integer n. Jewell [Pacific J. Math. 68 (1977), 91-98], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that ker(d0) ⊆ ker(dm), for all m = 1. In this paper, under a different approach using C*-algebraic tools, we prove that each higher derivation {dn} on a C*-algebra A is automatically continuous, provided that it is normal, i. e. d0 is the identity mapping on A. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/101-108/pdf | |
dc.rights | Copyright (c) 2010 Proyecciones. Journal of Mathematics | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 29 No. 2 (2010); 101-108 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 29 Núm. 2 (2010); 101-108 | es-ES |
dc.source | 0717-6279 | |
dc.subject | Derivation | es-ES |
dc.subject | higher derivation | es-ES |
dc.subject | automatic continuity | es-ES |
dc.subject | Sakai theorem | es-ES |
dc.subject | derivación | es-ES |
dc.subject | derivación de grados superiores | es-ES |
dc.subject | continuidad automática | es-ES |
dc.subject | teorema de Sakai. | es-ES |
dc.title | Jewell theorem for higher derivations on C*-algebras. | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Peer-reviewed Article | en-US |