Show simple item record

dc.creatorSwartz, Charles
dc.date2017-05-22
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1572
dc.identifier10.4067/S0716-09172004000100005
dc.descriptionLet X, Y be locally convex spaces and L(X, Y ) the space of continuous linear operators from X into Y . We consider 2 types of multiplier convergent theorems for a series ? T? in L(X, Y ). First, if ? is a scalar sequence space, we say that the series ? T? is ? multiplier P convergent for a locally convex topology ? on L(X, Y ) if the series ? t?T? is ? convergent for every t = {t?} ? ?. We establish conditions on ? which guarantee that a ? multiplier convergent series in the weak or strong operator topology is ? multiplier convergent in the topology of uniform convergence on the bounded subsets of X. Second, we consider vector valued multipliers. If E is a sequence space of X valued sequences, the series ? T? is E multiplier convergent in a locally convex topology ? on Y if the series ? T?x? is ? convergent for every x = {x?} ? E. We consider a gliding hump property on E which guarantees that a series ? T? which is E multiplier convergent for the weak topology of Y is E multiplier convergent for the strong topology of Y .es-ES
dc.publisherUniversidad Católica del Norte.en-US
dc.rightsCopyright (c) 2004 Proyecciones. Journal of Mathematicsen-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 23 No. 1 (2004); 61-72en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 23 Núm. 1 (2004); 61-72es-ES
dc.source0717-6279
dc.subjectLocally convex spaceses-ES
dc.subjectOrlicz-Pettis theoremses-ES
dc.subjectcontinuous linear operatorses-ES
dc.subjectconvergencees-ES
dc.subjectscalar spaceses-ES
dc.subjectsequence spaceses-ES
dc.subjectserieses-ES
dc.subjectlocally convex topologyes-ES
dc.subjectespacios localmente convexoses-ES
dc.subjectteoremas de Orlicz-Pettises-ES
dc.subjectoperadores lineales continuoses-ES
dc.subjectconvergencia.es-ES
dc.titleOrlicz-Pettis theorems for multiplier convergent operator valued serieses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US


This item appears in the following Collection(s)

Show simple item record