dc.creator | Bobenrieth, Juan | |
dc.date | 2017-05-22 | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1584 | |
dc.identifier | 10.4067/S0716-09172002000100001 | |
dc.description | Consider the family of rational mapsFd = {z? fw(z) =1+ : w ? C\{0}} (d ? N, d ? 2)and the hyperbolic component A? = {w : fw has an attracting fixed point}. We prove that if w? ? ?A? is a parabolic parameter with corresponding multiplier a primitive q-th root of unity, q ? 2; then there exists a hyperbolic component Wq; attached to A? at the point w?; which contains w-values for which fw has an attracting periodic cycle of period q. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1584/2047 | |
dc.rights | Copyright (c) 2002 Proyecciones. Journal of Mathematics | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 21 No. 1 (2002); 1-7 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 21 Núm. 1 (2002); 1-7 | es-ES |
dc.source | 0717-6279 | |
dc.subject | Rational maps | es-ES |
dc.subject | roots of unity | es-ES |
dc.subject | primitives | es-ES |
dc.subject | periodic cycles | es-ES |
dc.subject | hyperbolic components | es-ES |
dc.subject | mapas racionales | es-ES |
dc.subject | raíces de unidad | es-ES |
dc.subject | primitivas | es-ES |
dc.subject | ciclos periódicos | es-ES |
dc.subject | componentes hiperbólicos. | es-ES |
dc.title | Parabolic perturbation in the family z ?1 + 1=wz? | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Peer-reviewed Article | en-US |