Show simple item record

dc.creatorBobenrieth, Juan
dc.date2017-05-22
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1584
dc.identifier10.4067/S0716-09172002000100001
dc.descriptionConsider the family of rational mapsFd = {z? fw(z) =1+ : w ? C\{0}} (d ? N, d ? 2)and the hyperbolic component A? = {w : fw has an attracting fixed point}. We prove that if w? ? ?A? is a parabolic parameter with corresponding multiplier a primitive q-th root of unity, q ? 2; then there exists a hyperbolic component Wq; attached to A? at the point w?; which contains w-values for which fw has an attracting periodic cycle of period q.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/1584/2047
dc.rightsCopyright (c) 2002 Proyecciones. Journal of Mathematicsen-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 21 No. 1 (2002); 1-7en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 21 Núm. 1 (2002); 1-7es-ES
dc.source0717-6279
dc.subjectRational mapses-ES
dc.subjectroots of unityes-ES
dc.subjectprimitiveses-ES
dc.subjectperiodic cycleses-ES
dc.subjecthyperbolic componentses-ES
dc.subjectmapas racionaleses-ES
dc.subjectraíces de unidades-ES
dc.subjectprimitivases-ES
dc.subjectciclos periódicoses-ES
dc.subjectcomponentes hiperbólicos.es-ES
dc.titleParabolic perturbation in the family z ?1 + 1=wz?es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US


This item appears in the following Collection(s)

Show simple item record