• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad Católica del Norte
  • Proyecciones: Journal of Mathematics
  • View Item
  •   Home
  • Universidad Católica del Norte
  • Proyecciones: Journal of Mathematics
  • View Item

The total detour monophonic number of a graph.

Author
Santhakumaran, A. P.

Titus, P.

Ganesamoorthy, K.

Full text
https://www.revistaproyecciones.cl/article/view/1642
10.4067/S0716-09172017000200209
Abstract
For a connected graph G = (V, E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A longest x – y monophonic path is called an x – y detour monophonic path. A set S of vertices of G  is a detour monophonic set of G if each vertex v of G lies on an x - y detour monophonic path for some x and y in S. The minimum cardinality of a detour monophonic set of G is the detour monophonic number of G and is denoted by dm(G). A total detour monophonic set of a graph G is a detour monophonic set S such that the subgraph induced by S has no isolated vertices. The minimum cardinality of a total detour monophonic set of G is the total detour monophonic number of G and is denoted by dmt(G). A total detour monophonic set of cardinality dmt(G) is called a dmt-set of G. We determine bounds for it and characterize graphs which realize the lower bound. It is shown that for positive integers r, d and k ≥ 6 with r < d there exists a connected graph G with monophonic radius r, monophonic diameter d and dmt(G) = k. For positive integers a, b such that 4 ≤ a ≤ b with b ≤ 2a, there exists a connected graph G such that dm(G) = a and dmt(G) = b. Also, if p, d and k are positive integers such that 2 ≤ d ≤ p - 2, 3 ≤ k ≤ p and p – d – k + 3 ≥ 0, there exists a connected graph G of order p, monophonic diameter d and dmt(G) = k.
Metadata
Show full item record

Related items

Showing items related by title, author, creator and subject.

  • Edge-to-vertex m-detour monophonic number of a graph. 

    Santhakumaran, A. P.; Titus, P.; Ganesamoorthy, K.. Proyecciones. Journal of Mathematics; Vol 37 No 3 (2018); 415-428
  • Upper Edge Detour Monophonic Number of a Graph 

    Titus, P.; Ganesamoorthy, K.. Proyecciones. Journal of Mathematics; Vol 33 No 2 (2014); 175-187
  • Edge Detour Monophonic Number of a Graph 

    Santhakumaran, A. P.; Titus, P.; Ganesamoorthy, K.; Balakrishnan, P.. Proyecciones. Journal of Mathematics; Vol 32 No 2 (2013); 183-198
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB