Show simple item record

dc.creatorRodado Amaris, Armando
dc.creatorLusares, Gina
dc.date2017-10-20
dc.date.accessioned2019-11-14T12:00:14Z
dc.date.available2019-11-14T12:00:14Z
dc.identifierhttps://www.revistaproyecciones.cl/article/view/2383
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/113334
dc.descriptionThe existence of an explicit and canonical cell decomposition of the moduli space of closed Riemann surfaces of genus two shows that each Riemann surface of genus two can be parametrised by a 12-tuple of real numbers which corresponds to the  angle coordinates of a graph associated to the surface. This suggests a Circle Pattern Uniformization Problem that we have defined and solved for three classical Riemann surfaces of genus two. Although in general, finding the exact algebraic equations corresponding to a hyperbolic surface from angle coordinates is a hard problem, we prove that known numerical methods can be applied to find approximated equations of Riemann surfaces of genus two from their angle coordinates and graph data for a large family of Riemann surfaces of genus two.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttps://www.revistaproyecciones.cl/article/view/2383/1976
dc.rightsDerechos de autor 2017 Proyecciones. Journal of Mathematicses-ES
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 36 No 3 (2017); 397-422en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 36 Núm. 3 (2017); 397-422es-ES
dc.source0717-6279
dc.source0716-0917
dc.subjectUniformization problemen-US
dc.subjectRiemann surfaces of genus twoen-US
dc.subjectCircle pattern uniformization problemen-US
dc.titleThe circle pattern uniformization problem.en-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record