dc.creator | Argyros, Ioannis K. | |
dc.creator | Chen, Dong | |
dc.date | 2018-04-03 | |
dc.date.accessioned | 2019-11-14T12:00:52Z | |
dc.date.available | 2019-11-14T12:00:52Z | |
dc.identifier | https://www.revistaproyecciones.cl/article/view/2646 | |
dc.identifier | 10.22199/S07160917.1994.0001.00007 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/113524 | |
dc.description | We study the Ostrowski-Kantorovich convergence for a family of Halley- Werner type iteration methods in the complex plane. We provide an upper error bound for all parameter ⍺ ∊ [1 , 2). We show that the error bound is a decreasing function of ⍺. We prove also that the Halley method has the largest error bound. | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | https://www.revistaproyecciones.cl/article/view/2646/2240 | |
dc.rights | Derechos de autor 1994 Proyecciones. Journal of Mathematics | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 13 No 1 (1994); 53-61 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 13 Núm. 1 (1994); 53-61 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.subject | Nonlinear equations | es-ES |
dc.subject | Halley- Werner type methods | es-ES |
dc.subject | Ostrowski-Kantorovich analysis | es-ES |
dc.subject | Upper error bound | es-ES |
dc.title | Parameter-based algorithms for approximating local solution of nonlinear complex equations | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |