dc.creator | Abujabal, Hamza A. S. | |
dc.creator | Peric, Veselin | |
dc.date | 2018-04-03 | |
dc.date.accessioned | 2019-11-14T12:00:53Z | |
dc.date.available | 2019-11-14T12:00:53Z | |
dc.identifier | https://www.revistaproyecciones.cl/article/view/2694 | |
dc.identifier | 10.22199/S07160917.1995.0001.00003 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/113537 | |
dc.description | We investigate here the commutativity of a left (resp. right) s-unital ring R satisfying the polynomial identity yr [xny] xt = ±y3 [x, ym] (resp. yr [xn, y] xt = ± [x, ym] ys ) for some non-negative integers m >0, n > 0, r, s and t such that n + t > 1 (resp. m + s > 1 for r = 0). For such a ring R, we prove the commutativity if n + t > 1, and the commutators in R are n-torsion free (Q (n) property) for m > 1, n > 1, and ( t + 1)-torsion free for n = 1 (and t > 0). lf r = 0, then R is commutative provided m+ s > 1 and R has Q (m) property for m > 1, n > 1, and Q (s + 1) property for m = 1 (and s > 0). Especially, for r = 0, R is commutative, if m and n are relatively prime integers (not both equal to one). | es-ES |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | https://www.revistaproyecciones.cl/article/view/2694/2271 | |
dc.rights | Derechos de autor 1995 Proyecciones. Journal of Mathematics | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 14 No 1 (1995); 27-42 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 14 Núm. 1 (1995); 27-42 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.subject | Generalizations of commutativity | es-ES |
dc.title | Commutativity results for rings with certain constraints on commutators | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |