Show simple item record

dc.creatorAbujabal, Hamza A. S.
dc.creatorPeric, Veselin
dc.date2018-04-03
dc.date.accessioned2019-11-14T12:00:53Z
dc.date.available2019-11-14T12:00:53Z
dc.identifierhttps://www.revistaproyecciones.cl/article/view/2694
dc.identifier10.22199/S07160917.1995.0001.00003
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/113537
dc.descriptionWe investigate here the commutativity of a left (resp. right) s-unital ring R satisfying the polynomial identity yr [xny] xt = ±y3 [x, ym] (resp. yr [xn, y] xt = ± [x, ym] ys ) for some non-negative integers m >0, n > 0, r, s and t such that n + t > 1 (resp. m + s > 1 for r = 0). For such a ring R, we prove the commutativity if n + t > 1, and the commutators in R are n-torsion free (Q (n) property) for m > 1, n > 1, and ( t + 1)-torsion free for n = 1 (and t > 0). lf r = 0, then R is commutative provided m+ s > 1 and R has Q (m) property for m > 1, n > 1, and Q (s + 1) property for m = 1 (and s > 0). Especially, for r = 0, R is commutative, if m and n are relatively prime integers (not both equal to one).es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttps://www.revistaproyecciones.cl/article/view/2694/2271
dc.rightsDerechos de autor 1995 Proyecciones. Journal of Mathematicses-ES
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/es-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 14 No 1 (1995); 27-42en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 14 Núm. 1 (1995); 27-42es-ES
dc.source0717-6279
dc.source0716-0917
dc.subjectGeneralizations of commutativityes-ES
dc.titleCommutativity results for rings with certain constraints on commutatorses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record