Show simple item record

dc.creatorCortés Vega, Luis A.
dc.date2018-06-07
dc.date.accessioned2019-11-14T12:01:14Z
dc.date.available2019-11-14T12:01:14Z
dc.identifierhttps://www.revistaproyecciones.cl/article/view/2934
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/113641
dc.descriptionIn this article, the notion of modular multiplicative inverse operator (MMIO) ℐϱ : (Z/ϱZ)* → Z/ϱZ, ℐϱ (a) = a-1, where ϱ=b × d >3 with b, d ∈ N, is introduced and studied. A general method to decompose (MMIO) over group of units of the form (Z/ϱZ)* is also discussed through a new algorithmic functional version of Bezout's theorem. As a result, interesting decomposition laws for (MMIO)'s over (Z/ϱZ)* are obtained. Several numerical examples confirming the theoretical results are also reported.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.es-ES
dc.relationhttps://www.revistaproyecciones.cl/article/view/2934/2770
dc.rightsDerechos de autor 2018 Proyecciones. Journal of Mathematicses-ES
dc.sourceProyecciones. Journal of Mathematics; Vol 37 No 2 (2018); 265-293en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 37 Núm. 2 (2018); 265-293es-ES
dc.source0717-6279
dc.source0716-0917
dc.subjectDescomposition lawsen-US
dc.subjectGroup of unitsen-US
dc.subjectBezout’s theoremen-US
dc.subjectModular multiplicative inverse operatoren-US
dc.subjectAlgorithmic functional techniqueen-US
dc.subjectChinese remainder theoremen-US
dc.titleA general method for to decompose modular multiplicative inverse operators over Group of units.en-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo revisado por pareses-ES


This item appears in the following Collection(s)

Show simple item record