dc.creator | Cortés Vega, Luis A. | |
dc.date | 2018-06-07 | |
dc.date.accessioned | 2019-11-14T12:01:14Z | |
dc.date.available | 2019-11-14T12:01:14Z | |
dc.identifier | https://www.revistaproyecciones.cl/article/view/2934 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/113641 | |
dc.description | In this article, the notion of modular multiplicative inverse operator (MMIO)
ℐϱ : (Z/ϱZ)* → Z/ϱZ, ℐϱ (a) = a-1,
where ϱ=b × d >3 with b, d ∈ N, is introduced and studied. A general method to decompose (MMIO) over group of units of the form (Z/ϱZ)* is also discussed through a new algorithmic functional version of Bezout's theorem. As a result, interesting decomposition laws for (MMIO)'s over (Z/ϱZ)* are obtained. Several numerical examples confirming the theoretical results are also reported. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | es-ES |
dc.relation | https://www.revistaproyecciones.cl/article/view/2934/2770 | |
dc.rights | Derechos de autor 2018 Proyecciones. Journal of Mathematics | es-ES |
dc.source | Proyecciones. Journal of Mathematics; Vol 37 No 2 (2018); 265-293 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 37 Núm. 2 (2018); 265-293 | es-ES |
dc.source | 0717-6279 | |
dc.source | 0716-0917 | |
dc.subject | Descomposition laws | en-US |
dc.subject | Group of units | en-US |
dc.subject | Bezout’s theorem | en-US |
dc.subject | Modular multiplicative inverse operator | en-US |
dc.subject | Algorithmic functional technique | en-US |
dc.subject | Chinese remainder theorem | en-US |
dc.title | A general method for to decompose modular multiplicative inverse operators over Group of units. | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Artículo revisado por pares | es-ES |