dc.creator | Khan, Yaqoub Ahmed | |
dc.creator | Naeem, Muhammad | |
dc.creator | Siddiqui, Muhammad Kamran | |
dc.creator | Farahani, Mohammad Reza | |
dc.date | 2020-07-28 | |
dc.date.accessioned | 2020-07-29T16:37:59Z | |
dc.date.available | 2020-07-29T16:37:59Z | |
dc.identifier | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4249 | |
dc.identifier | 10.22199/issn.0717-6279-2020-04-0046 | |
dc.identifier.uri | https://revistaschilenas.uchile.cl/handle/2250/147134 | |
dc.description | Let G be a nontrivial connected graph. Then G is called a rainbow connected graph if there exists a coloring c : E(G) ? {1, 2, ..., k}, k ? N, of the edges of G, such that there is a u ? v rainbow path between every two vertices of G, where a path P in G is a rainbow path if no two edges of P are colored the same. The minimum k for which there exists such a k-edge coloring is the rainbow connection number rc(G) of G. If for every pair u, v of distinct vertices, G contains a rainbow u ? v geodesic, then G is called strong rainbow connected. The minimum k for which G is strong rainbow-connected is called the strong rainbow connection number src(G) of G.
The exact rc and src of the rotationally symmetric graphs are determined. | en-US |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universidad Católica del Norte. | en-US |
dc.relation | https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4249/3488 | |
dc.rights | Copyright (c) 2020 Yaqoub Ahmed Khan, Muhammad Naeem, Muhammad Kamran Siddiqui, Mohammad Reza Farahani | en-US |
dc.rights | http://creativecommons.org/licenses/by/4.0 | en-US |
dc.source | Proyecciones (Antofagasta, On line); Vol. 39 No. 4 (2020): Special Issue: Mathematical Computation in Combinatorics and Graph Theory; 737-747 | en-US |
dc.source | Proyecciones. Revista de Matemática; Vol. 39 Núm. 4 (2020): Special Issue: Mathematical Computation in Combinatorics and Graph Theory; 737-747 | es-ES |
dc.source | 0717-6279 | |
dc.source | 10.22199/issn.0717-6279-2020-04 | |
dc.subject | Edge coloring | en-US |
dc.subject | Rainbow coloring | en-US |
dc.subject | Strong rainbow coloring | en-US |
dc.subject | 05C15 | en-US |
dc.subject | Coloring of graphs and hypergraphs | en-US |
dc.subject | 05C38 | en-US |
dc.subject | Paths and cycles | en-US |
dc.subject | 05C40 | en-US |
dc.subject | Connectivity | en-US |
dc.title | Rainbow and strong rainbow connection number for some families of graphs | en-US |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Peer-reviewed Article | en-US |
dc.type | text | en-US |