Show simple item record

Growth, elemental and proximate biochemical composition of larval Amazon River prawn, Macrobrachium amazonicum, reared under different salinity conditions

dc.contributorCAPES, Brazil (Grant 1154/10-9), FUNDECT (Grants 23/200.194/2010, 23/200.586/2012, 23/200.649/2014, 23/200.755/2014), Comisión Nacional de Ciencia y Tecnología, CONICYT (Grants FONDECYT 11140213, PAI 79130025)es-ES
dc.contributorCAPES, Brazil (Grant 1154/10-9) and FUNDECT (Grants 23/200.194/2010, 23/200.586/2012, 23/200.649/2014, 23/200.755/2014). AComisión Nacional de Ciencia y Tecnología, CONICYT (Grants FONDECYT 11140213, PAI 79130025).en-US
dc.creatorHayd, Liliam A.
dc.creatorAnger, Klaus
dc.creatorUrzúa, Ángel
dc.date2018-03-15
dc.date.accessioned2020-11-05T13:36:14Z
dc.date.available2020-11-05T13:36:14Z
dc.identifierhttp://lajar.ucv.cl/index.php/rlajar/article/view/vol45-issue5-fulltext-14
dc.identifier10.3856/vol45-issue5-fulltext-14
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/158985
dc.descriptionLarvae of the Amazon River prawn, Macrobrachium amazonicum, were reared from hatching through nine stages to the first juvenile instar, comparing four experimental conditions with two salinities (5, 10) and two different types of salt (artificial, natural). Larval biomass growth was measured in terms of changes in dry weight (W), contents of carbon and nitrogen (C, N), and proximate biochemical composition (lipid, protein); moreover, body size (carapace length, CL) was measured in first-stage juveniles. After passing through the non-feeding first larval stage, later stages showed an exponential increase in values of biomass per individual. Rates of increase differed significantly among treatments, showing generally lower growth in experiments with artificial vs. natural salt, and at 5 vs. 10. The same response pattern was found also in CL of early juvenile shrimps. Similar but mostly weaker effects were observed in the percentage C, N, lipid, and protein values (in % of W), and in the C:N mass ratio. Our data indicate that larval rearing of M. amazonicum is feasible with artificial salts and at lower than commonly used standard salinity (10). This makes the cultivation of this species feasible also in aquaculture facilities located at large distance from the coast, where a reduction of costs and logistic investments may compensate for reduced larval growth and production of smaller juveniles. However, these negative effects have to be taken into account in comparisons of growth data from different laboratories.es-ES
dc.descriptionIn the aquaculture of prawns in inland facilities, the supply with natural seawater is technically difficult and expensive, while the use of artificial salt may be suboptimal due to unfavorable ionic composition. In the present study, Amazon River prawn, Macrobrachium amazonicum, were reared from hatching through nine larval stages to the first juvenile instar, comparing four experimental conditions with two salinities (5, 10) and two different types of salt (artificial, natural). Larval biomass growth was measured in terms of changes in dry weight (W), contents of carbon and nitrogen (C, N), and proximate biochemical composition (lipid, protein); moreover, body size (carapace length, CL) was measured in first-stage juveniles. After passing through the nonfeeding first larval stage, later stages showed an exponential increase in values of biomass per individual. Rates of increase differed significantly among treatments, showing generally lower growth in experiments with artificial vs. natural salt, and at 5 vs. 10. The same response pattern was found also in CL of early juvenile shrimps. Similar but mostly weaker effects were observed in the percentage C, N, lipid, and protein values (in % of W), and in the C: N mass ratio. Our data indicate that larval rearing of M. amazonicum is feasible with artificial salts and at lower than commonly used standard salinity (10). This makes the cultivation of this species feasible also in aquaculture facilities located at large distance from the coast, where a reduction of costs and logistic investments may compensate for reduced larval growth and production of smaller juveniles. However, these salinity effects on offspring production have to be taken into account in comparisons of growth data from different laboratories and locations.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherPontificia Universidad Católica de Valparaísoen-US
dc.relationhttp://lajar.ucv.cl/index.php/rlajar/article/view/vol45-issue5-fulltext-14/877
dc.sourceLatin American Journal of Aquatic Research; Vol 45, No 5 (2017); 983-991en-US
dc.sourcePlataforma para envío de artículos - Latin American Journal of Aquatic Research; Vol 45, No 5 (2017); 983-991es-ES
dc.source0718-560X
dc.source0718-560X
dc.subjectRearing, larval growth, lipid, protein, CHN, developmentes-ES
dc.subjectMacrobrachium amazonicum; rearing; larval growth; development; lipid; protein; aquacultureen-US
dc.titleGrowth, elemental and proximate biochemical composition of larval Amazon River prawn, Macrobrachium amazonicum, reared under different salinity conditionses-ES
dc.titleGrowth, elemental and proximate biochemical composition of larval Amazon River prawn, Macrobrachium amazonicum, reared under different salinity conditionsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeen-US
dc.typees-ES


This item appears in the following Collection(s)

Show simple item record