Show simple item record

dc.creatorThomas, Elias John
dc.creatorChandran S. V., Ullas
dc.date2021-03-01
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4080
dc.identifier10.22199/issn.0717-6279-2021-02-0023
dc.descriptionAn independent set S of vertices in a graph G is an independent position set if no three vertices of S lie on a common geodesic. An independent position set of maximum size is an ip-set of G. The cardinality of an ip-set is the independent position number, denoted by ip(G). In this paper, we introduce and study the independent position number of a graph. Certain general properties of these concepts are discussed. Graphs of order n having the independent position number 1 or n − 1 are characterized. Bounds for the independent position number of Cartesian and Lexicographic product graphs are determined and the exact value for Corona product graphs are obtained. Finally, some realization results are proved to show that there is no general relationship between independent position sets and other related graph invariantsen-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4080/3695
dc.rightsCopyright (c) 2021 Elias John Thomas, Ullas Chandran S. V.en-US
dc.rightshttp://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 40 No. 2 (2021); 385-398en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 40 Núm. 2 (2021); 385-398es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2021-02
dc.subjectGeneral position seten-US
dc.subjectIndependent seten-US
dc.subjectIndependent numberen-US
dc.subjectIndependent position numberen-US
dc.subject05C12en-US
dc.subject05C69.en-US
dc.titleOn independent position sets in graphsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record