• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Pontificia Universidad Católica de Valparaíso
  • Latin American Journal of Aquatic Research
  • View Item
  •   Home
  • Pontificia Universidad Católica de Valparaíso
  • Latin American Journal of Aquatic Research
  • View Item

Focused small-scale fisheries as complex systems using deep learning models

Author
Cavieses-Núñez, Ricardo

Ojeda-Ruiz, Miguel A.

Flores-Irigollen, Alfredo

Marín-Monroy, Elvia

Albañez-Lucero, Mirtha

Sánchez-Ortíz, Carlos

Full text
http://lajar.ucv.cl/index.php/rlajar/article/view/vol49-issue2-fulltext-2622
10.3856/vol49-issue2-fulltext-2622
Abstract
Small-scale fishing (SSF) is a relevant economic activity worldwide, so sustainable development will be essential to assure its contributions to food security, poverty alleviation, and healthy ecosystems. However, the wide diversity of fisheries, their complexity, and the lack of information limit the ability to propose/evaluate management measures and plans and their effects on communities and other productive activities. The state of Baja California Sur, Mexico, our study case, ranks as the third place in national fisheries production, possesses SSF fleets, has a wide variety of fisheries that share fishing areas, fishing seasons, and operating units. In this work, assuming SSF as a complex system were proposed deep learning models (DLM) to forecast the catch volumes, evaluate each input variable's importance, and find interactions. Environmental variables and catch fisheries were tested in the DLM to estimate their predictive power. Different DLM structures and parameters to find the optimal model was used. The variables that presented higher predictive power are the environmental variables with R = 0.90. Moreover, when used in combination with the catches from other areas, the performance of R = 0.95 is obtained. Using only the catches, the model has an R = 0.81. This model allows the use of variables that indirectly affect the system and demonstrates a useful tool to assess a complex system's state in the face of disturbances in its variables.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB