SD-prime cordial labeling of alternate k-polygonal snake of various types
Author
Prajapati, Udayan
Vantiya, Anit
Full text
https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/401510.22199/issn.0717-6279-4015
Abstract
Let f : V (G) → {1, 2,..., |V (G)|} be a bijection, and let us denote S = f(u) + f(v) and D = |f(u) − f(v)| for every edge uv in E(G). Let f' be the induced edge labeling, induced by the vertex labeling f, defined as f' : E(G) → {0, 1} such that for any edge uv in E(G), f' (uv)=1 if gcd(S, D)=1, and f' (uv)=0 otherwise. Let ef' (0) and ef' (1) be the number of edges labeled with 0 and 1 respectively. f is SD-prime cordial labeling if |ef' (0) − ef' (1)| ≤ 1 and G is SD-prime cordial graph if it admits SD-prime cordial labeling. In this paper, we have discussed the SD-prime cordial labeling of alternate k-polygonal snake graphs of type-1, type-2 and type-3.
Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
Odd Vertex Equitable Even Labeling of Cycle Related Graphs
Jeyanthi, P.; Maheswari, A.. CUBO, A Mathematical Journal; Vol. 20 No. 2 (2018); 13–21 -
3-product cordial labeling of some snake graphs.
Jeyanthi, P.; Maheswari, A.; Vijayalakshmi, M.. Proyecciones. Journal of Mathematics; Vol 38 No 1 (2019); 13-30 -
Even vertex equitable even labeling for snake related graphs.
Lourdusamy, A.; Wency, S. Jenifer; Patrick, F.. Proyecciones. Journal of Mathematics; Vol 38 No 1 (2019); 177-189