Show simple item record

dc.creatorRomano, Daniel
dc.date2021-05-18
dc.date.accessioned2021-08-19T15:51:21Z
dc.date.available2021-08-19T15:51:21Z
dc.identifierhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4332
dc.identifier10.22199/issn.0717-6279-4332
dc.identifier.urihttps://revistaschilenas.uchile.cl/handle/2250/174603
dc.descriptionThe concept of residuated relational systems ordered under a quasiorder relation was introduced in 2018 by S. Bonzio and I. Chajda as a structure A = ⟨A, ·,→, 1, R⟩, where (A, ·) is a commutative monoid with the identity 1 as the top element in this ordered monoid under a quasi-order R. The author introduced and analyzed the concepts of filters and implicative filters in this type of algebraic structures. In this article, the concept of weak implicative filters in a quasi-ordered residuated system is introduced as a continuation of previous researches. Also, some conditions for a filter of such system to be a weak implicative filter are listed.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Católica del Norte.en-US
dc.relationhttps://www.revistaproyecciones.cl/index.php/proyecciones/article/view/4332/3780
dc.rightsCopyright (c) 2021 Daniel Romanoen-US
dc.rightshttp://creativecommons.org/licenses/by/4.0en-US
dc.sourceProyecciones (Antofagasta, On line); Vol. 40 No. 3 (2021); 797-804en-US
dc.sourceProyecciones. Revista de Matemática; Vol. 40 Núm. 3 (2021); 797-804es-ES
dc.source0717-6279
dc.source10.22199/issn.0717-6279-2021-03
dc.subjectQuasi-ordered residuated relational systemen-US
dc.subjectFilteren-US
dc.subjectImplicative filteren-US
dc.subjectWeak implicative filteren-US
dc.subject08A02en-US
dc.subject06A11en-US
dc.subject06B75en-US
dc.titleWeak implicative filters in quasi-ordered residuated systemsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typePeer-reviewed Articleen-US
dc.typetexten-US


This item appears in the following Collection(s)

Show simple item record