• Journals
  • Discipline
  • Indexed
  • Institutions
  • About
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item
  •   Home
  • Universidad de la Frontera
  • Cubo: A Mathematical Journal
  • View Item

Optimality of constants in power-weighted Birman–Hardy–Rellich-Type inequalities with logarithmic refinements

Author
Gesztesy, Fritz

Michael, Isaac

Pang, Michael M. H.

Full text
https://revistas.ufro.cl/ojs/index.php/cubo/article/view/2965
10.4067/S0719-06462022000100115
Abstract
The principal aim of this paper is to establish the optimality (i.e., sharpness) of the constants \(A(m, \alpha)\) and \(B(m, \alpha)\), \(m \in \mathbb N\), \(\alpha \in \mathbb R\), of the form  \begin{align*} &A(m, \alpha) = 4^{-m} \prod_{j=1}^{m} (2j - 1 -\alpha)^2, \\ &B(m, \alpha) = 4^{-m} \sum_{k=1}^{m} \ \prod_{\substack{j = 1\\ j \ne k}}^{m} ( 2j - 1 - \alpha )^{2}, \end{align*} in the power-weighted Birman--Hardy--Rellich-type integral inequalities with logarithmic refinement terms recently proved in [41], namely, \begin{align*} &\int_0^{\rho} dx \, x^{\alpha} \big| f^{(m )}(x) \big|^{2} \geq A(m, \alpha) \int_0^{\rho} dx \,  x^{\alpha - 2m} \big|f(x)\big|^{2}  \\ &\quad+ B(m, \alpha) \sum_{k=1}^{N} \int_0^{\rho} dx \, x^{\alpha - 2m}\prod_{p=1}^{k} [\ln_{p}(\gamma/x)]^{-2} \big|f(x)\big|^{2},   \\ & \, f \in C_{0}^{\infty}((0, \rho)), \; m, {N} \in \mathbb N, \; \alpha \in \mathbb R, \; \rho, \gamma \in (0,\infty), \; \gamma \geq e_{N} \rho. \end{align*} Here the iterated logarithms are given by \[ \ln_{1}( \, \cdot \,) = \ln(\, \cdot \,), \quad \ln_{j+1}( \, \cdot \,) = \ln( \ln_{j}(\, \cdot \,)), \quad j \in \mathbb N, \] and the iterated exponentials are defined via \[e_{0} = 0, \quad e_{j+1} = e^{e_{j}}, \quad j \in \mathbb N_{0} = \mathbb N \cup \{0\}. \] Moreover, we prove the analogous sequence of inequalities on the exterior interval \((r,\infty)\) for \(f \in C_{0}^{\infty}((r,\infty))\), \(r \in (0,\infty)\), and once again prove optimality of the constants involved.
Metadata
Show full item record
Discipline
Artes, Arquitectura y UrbanismoCiencias Agrarias, Forestales y VeterinariasCiencias Exactas y NaturalesCiencias SocialesDerechoEconomía y AdministraciónFilosofía y HumanidadesIngenieríaMedicinaMultidisciplinarias
Institutions
Universidad de ChileUniversidad Católica de ChileUniversidad de Santiago de ChileUniversidad de ConcepciónUniversidad Austral de ChileUniversidad Católica de ValparaísoUniversidad del Bio BioUniversidad de ValparaísoUniversidad Católica del Nortemore

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Dirección de Servicios de Información y Bibliotecas (SISIB) - Universidad de Chile
© 2019 Dspace - Modificado por SISIB