Show simple item record

dc.creatorGesztesy, Fritz
dc.creatorMichael, Isaac
dc.creatorPang, Michael M. H.
dc.date2022-04-12
dc.identifierhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/2965
dc.identifier10.4067/S0719-06462022000100115
dc.descriptionThe principal aim of this paper is to establish the optimality (i.e., sharpness) of the constants \(A(m, \alpha)\) and \(B(m, \alpha)\), \(m \in \mathbb N\), \(\alpha \in \mathbb R\), of the form  \begin{align*} &A(m, \alpha) = 4^{-m} \prod_{j=1}^{m} (2j - 1 -\alpha)^2, \\ &B(m, \alpha) = 4^{-m} \sum_{k=1}^{m} \ \prod_{\substack{j = 1\\ j \ne k}}^{m} ( 2j - 1 - \alpha )^{2}, \end{align*} in the power-weighted Birman--Hardy--Rellich-type integral inequalities with logarithmic refinement terms recently proved in [41], namely, \begin{align*} &\int_0^{\rho} dx \, x^{\alpha} \big| f^{(m )}(x) \big|^{2} \geq A(m, \alpha) \int_0^{\rho} dx \,  x^{\alpha - 2m} \big|f(x)\big|^{2}  \\ &\quad+ B(m, \alpha) \sum_{k=1}^{N} \int_0^{\rho} dx \, x^{\alpha - 2m}\prod_{p=1}^{k} [\ln_{p}(\gamma/x)]^{-2} \big|f(x)\big|^{2},   \\ & \, f \in C_{0}^{\infty}((0, \rho)), \; m, {N} \in \mathbb N, \; \alpha \in \mathbb R, \; \rho, \gamma \in (0,\infty), \; \gamma \geq e_{N} \rho. \end{align*} Here the iterated logarithms are given by \[ \ln_{1}( \, \cdot \,) = \ln(\, \cdot \,), \quad \ln_{j+1}( \, \cdot \,) = \ln( \ln_{j}(\, \cdot \,)), \quad j \in \mathbb N, \] and the iterated exponentials are defined via \[e_{0} = 0, \quad e_{j+1} = e^{e_{j}}, \quad j \in \mathbb N_{0} = \mathbb N \cup \{0\}. \] Moreover, we prove the analogous sequence of inequalities on the exterior interval \((r,\infty)\) for \(f \in C_{0}^{\infty}((r,\infty))\), \(r \in (0,\infty)\), and once again prove optimality of the constants involved.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de La Frontera. Temuco, Chile.en-US
dc.relationhttps://revistas.ufro.cl/ojs/index.php/cubo/article/view/2965/2186
dc.rightsCopyright (c) 2022 F. Gesztesy et al.en-US
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 24 No. 1 (2022); 115–165en-US
dc.sourceCUBO, A Mathematical Journal; Vol. 24 Núm. 1 (2022); 115–165es-ES
dc.source0719-0646
dc.source0716-7776
dc.subjectBirman-Hardy-Rellich inequalitiesen-US
dc.subjectlogarithmic refinementsen-US
dc.titleOptimality of constants in power-weighted Birman–Hardy–Rellich-Type inequalities with logarithmic refinementsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record